Earth Rotation and Revolution
The term Earth rotation refers to the spinning of our planet on its axis. Because of rotation, the Earth's surface moves at the equator at a speed of about 467 m per second or slightly over 1675 km per hour. If you could look down at the Earth's North Pole from space you would notice that the direction of rotation is counter-clockwise (Figure 6h-1). The opposite is true if the Earth is viewed from the South Pole. One rotation takes exactly twenty-four hours and is called a mean solar day. The Earth’s rotation is responsible for the daily cycles of day and night. At any one moment in time, one half of the Earth is in sunlight, while the other half is in darkness. The edge dividing the daylight from night is called the circle of illumination. The Earth’s rotation also creates the apparent movement of the Sun across the horizon.

The orbit of the Earth around the Sun is called an Earth revolution. This celestial motion takes 365.26 days to complete one cycle. Further, the Earth's orbit around the Sun is not circular, but oval or elliptical (see Figure 6h-2). An elliptical orbit causes the Earth's distance from the Sun to vary over a year. Yet, this phenomenon is not responsible for the Earth’s seasons! This variation in the distance from the Sun causes the amount of solar radiation received by the Earth to annually vary by about 6%. Figure 6h-2 illustrates the positions in the Earth’s revolution where it is closest and farthest from the Sun. On January 3, perihelion, the Earth is closest to the Sun (147.3 million km). The Earth is farthest from the Sun on July 4, or aphelion (152.1 million km). The average distance of the Earth from the Sun over a one-year period is about 149.6 million km.

Figure 6h-2: Position of the equinoxes, solstices, aphelion, and perihelion relative to the Earth's orbit around the Sun.
Tilt of the Earth's Axis
The ecliptic plane can be defined as a two-dimensional flat surface that geometrically intersects the Earth's orbital path around the Sun. On this plane, the Earth's axis is not at right angles to this surface, but inclined at an angle of about 23.5° from the perpendicular. Figure 6h-3 shows a side view of the Earth in its orbit about the Sun on four important dates: June solstice, September equinox, December solstice, and March equinox. Note that the angle of the Earth's axis in relation to the ecliptic plane and the North Star on these four dates remains unchanged. Yet, the relative position of the Earth's axis to the Sun does change during this cycle. This circumstance is responsible for the annual changes in the height of the Sun above the horizon. It also causes the seasons, by controlling the intensity and duration of sunlight received by locations on the Earth. Figure 6h-4 shows an overhead view of this same phenomenon. In this view, we can see how the circle of illumination changes its position on the Earth’s surface. During the two equinoxes, the circle of illumination cuts through the North Pole and the South Pole. On the June solstice, the circle of illumination is tangent to the Arctic Circle (66.5° N) and the region above this latitude receives 24 hours of daylight. The Arctic Circle is in 24 hours of darkness during the December solstice.

Figure 6h-3:The Earth’s rotational axis is tilted 23.5° from the red line drawn perpendicular to the ecliptic plane. This tilt remains the same anywhere along the Earth’s orbit around the Sun.

On June 21 or 22 the Earth is positioned in its orbit so that the North Pole is leaning 23.5° toward the Sun (Figures 6h-3, 6h-4, 6h-5 and see animation - Figure 6h-7). During the June solstice (also called the summer solstice in the Northern Hemisphere), all locations north of the equator have day lengths greater than twelve hours, while all locations south of the equator have day lengths less than twelve hours (see Table 6h-2). On December 21 or 22 the Earth is positioned so that the South Pole is leaning 23.5 degrees toward the Sun (Figures 6h-3, 6h-4, 6h-5 and see animation - Figure 6h-8). During the December solstice (also called the winter solstice in the Northern Hemisphere), all locations north of the equator have day lengths less than twelve hours, while all locations south of the equator have day lengths exceeding twelve hours (see Table 6h-2).

On September 22 or 23, also called the autumnal equinox in the Northern Hemisphere, neither pole is tilted toward or away from the Sun (Figures 6h-3, 6h-4, 6h-6 and see animation - Figure 6h-9). In the Northern Hemisphere, March 20 or 21 marks the arrival of the vernal equinox or spring when once again the poles are not tilted toward or away from the Sun. Day lengths on both of these days, regardless of latitude, are exactly 12 hours.
